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a b s t r a c t

This paper presents a new approach based on multilayered perceptrons (MLPs) to compute the isothermal
decay curves of trapping centers in undoped TlGaSeS layered crystals. The MLP has been trained by
a Genetic Algorithm (GA). The results obtained using the MLP model were tested with an untrained
experimental data. The comparison has shown that the proposed model can predict more accurately and
easily the isothermal decay curves.
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. Introduction

The crystal TlGaSeS of layered semiconductors is formed from
lGaS2 and TlGaSe2 crystals by replacing half of the sulfur (sele-
ium) atoms with selenium (sulfur) atoms [1,2]. These crystals are
seful for optoelectronic applications as they have high photosen-
itivity in the visible range of the spectra and high birefringence in
onjunction with a wide transparency range of 0.5–14.0 �m [3–10].

One of the determining factors in the eventual device perfor-
ance of semiconductors is the presence of impurity and/or defect

enters in the crystal. Thus, it is very useful to get detailed informa-
ion on energetic and kinetic parameters of trapping centers (hole
raps in the present paper) in semiconductor in order to obtain
igh quality devices. Among the several experimental methods for

etermining the properties of trap centers in semiconductors, ther-
ally stimulated current (TSC) measurements are relatively easy to

erform and provide detailed information on trap states [11–19].

∗ Corresponding author. Fax: +90 224 2941899.
∗∗ Corresponding author. Fax: +90 384 2153948.

E-mail addresses: ikucuk@uludag.edu.tr (I. Kucuk), yildirimt@nevsehir.edu.tr
T. Yildirim).

925-8388/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jallcom.2010.08.009
The isothermal method is one of several methods to evaluate
the trapping parameters from the experimental TSC spectra. In this
method, the sample is heated at a constant rate from T0 to Tp and
then held at Tp until complete detrapping. For this process, the
thermally stimulated current can be described by [11]

I = I0 exp(−�t) (1)

where I0 is the initial current at time t = 0, � = � exp(Et/kTp), � is
the attempt-to-escape frequency and Et is the activation energy.
The TSC decay measurements on the TlGaSeS crystal were repeated
at temperatures Tp = 24, 29, 34, 39, 46 and 51 K. Thus, a series of
slopes (� values) of the plots ln(I) versus time t are obtained for
each temperature Tp. The ln values of the slopes versus 1/Tp give a
straight line from which Et was obtained. The linear intersection of
the ln(�) versus 1/Tp graph gives the attempt-to-escape frequency.

The generalization ability, real-time operation, and ease of
application have made artificial neural network (ANN) quite popu-
lar in the last years [20]. ANNs have been applied in many areas
because of these features [21–26]. The ANN software available

today provides many neural network architectures and learning
algorithms, to be applied for the specific problems.

The purpose of the present work is to model the isothermal
decay curves of trapping centers in undoped TlGaSeS layered crys-
tals using GA, ANNs and experimental data. The proposed model
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output (I) and the actual outputs (I ANN) of the MLP are calculated
through the network to adapt its weights using Eqs. (2)–(4). The
adaptation is carried out after the presentation of each set (s, Imax,
t and Th) until the calculation accuracy of the network is found
satisfactory according to some criterion (for example, when the
18 I. Kucuk et al. / Journal of Alloys

s not time consuming and more accurately and easily predicted
he isothermal decay curves in as-grown TlGaSeS layered single
rystals.

. Experimental details

TlGaSeS polycrystals were synthesized from high-purity elements prepared in
toichiometric proportions. Single crystals of TlGaSeS were grown by the Bridg-
an method. The resulting ingot appears red in color and the freshly cleaved

urfaces were mirror-like. For TSC measurements a sample with dimensions of
mm × 10 mm × 0.5 mm were used. Electrical contacts were made on the sample

urface with silver paste according to “sandwich” geometry. In this configuration,
he electrodes are placed on the front and back sides of the crystal. Thin copper wires
ere attached to the electrodes for circuit connection. The electrical conductivity of

he studied sample was p-type. The sample was mounted on the cold finger of the
ryostat.

The TSC measurements were performed in the temperature range from 10 to
00 K and using a closed-cycle helium cryostat. Constant heating rate of 0.8 K/s
as achieved by a Lake-Shore 331 temperature controller. A Keithley 228A volt-

ge/current source and a Keithley 6485 picoammeter were used for the TSC
easurements. The nominal instrumental sensitivities of temperature and current
easurement devices were about 10 mK and 2 pA, respectively.

. Multilayered perceptron neural networks

There are many types of neural networks for various applica-
ions available in the literature. Multilayered perceptrons (MLPs)
re feed-forward networks and universal approximators. MLPs are
he simplest and therefore most commonly used neural network
rchitectures [20]. In this paper, they have been adapted for the
omputation of the isothermal decay curves of trapping centers in
ndoped TlGaSeS layered crystals.

The MLP used in this work is trained with the GA. An MLP
onsists of three layers: an input layer, an output layer, and an inter-
ediate or hidden layer. Processing elements (PE) or neurons in the

nput layer only act as buffers for distributing the input signals xi (i
how the ith input PE) to PEs in the hidden layer. Each PE j (j show
he jth PE in the hidden layer and output layers) in the hidden layer
ums up its input signals xi after weighting with the values of the
espective connections wji from the input layer and computes its
utput yj as a function f of the sum,

j = f (
∑

wjixi) (2)

can be a simple threshold function, a sigmoid or hyperbolic tan-
ent function. The output of PEs in the output layer is computed
imilarly. Training a network consists of adjusting its weights using
training algorithm. The training algorithms adopted in this study
ptimize the weights by attempting to minimize the sum of squared
ifferences between the desired and the actual values of the output
eurons [20], namely:

= 1
2

∑

j

(ydj − yj)
2 (3)

here ydj is the desired value of output neuron j and yj is the actual
utput of that neuron. Each weight wji is adjusted by adding an
ncrement �wji to it. �wji is selected to reduce E as rapidly as pos-
ible. The adjustment is carried out over several training iterations
ntil a satisfactorily small value of E is obtained or a given number
f iterations are reached. The computed �wji depends on the train-
ng algorithm adopted. There are a number of training algorithms
sed to train a MLP and a frequently used one is called the back-
ropagation (BP) training algorithm [20]. The BP algorithm, which

s based on searching an error surface using gradient descent for

oints with minimum error, is relatively easy to implement. How-
ver, the BP algorithm has some problems for many applications
27]. The algorithm is not guaranteed to find the global minimum
f the error function since gradient descent may get stuck in local
inima, where it may remain indefinitely. In addition to this, long
ompounds 507 (2010) 517–520

training sessions are often required in order to find an acceptable
weight solution because of the well-known difficulties inherent in
gradient descent optimization [27].

In this work target current (I) for the MLP has been determined
by GA. The computation process is carried out with a set of TSC
measurements.

4. Determination of target current with genetic algorithm

The GA method is based on a computer simulation of biological
evolution and initially works with a randomly generated popula-
tion with several variables to be estimated [28]. The population size
is usually related to the problem under consideration and can be
determined by a number of variables. Each member or individual of
the population is usually called a chromosome or a string consisting
of genes or bits, and encoded into one variable (I) for this work. A
new population is built up by selecting individuals among members
of the initial population according to their fitnesses through funda-
mental genetic process of selection criterion based on the roulette
wheel. The fitness function (ff) is calculated by

ff = 1∑n
k=1(It d,k − It c,k)2

(4)

where n is the population size, It d and It c are the desired and com-
puted current, respectively.

Fitness value for each string was calculated using the fit-
ness function, hence new members were chosen for reproduction
according to their fitness based on the specified selection crite-
rion. Thus, the fittest had a greater chance to be selected for next
population. Once the reproduction was completed crossover oper-
ation was implemented by simply exchanging bits between two
randomly selected members in the population. The final genetic
process was mutation that randomly changes a particular bit in a
particular string, that is, a zero bit may change to a one or vice versa.

5. Results and discussion

The proposed technique involves training an MLP to compute
the current for isothermal decay curves when the values of slope
(s), maximum current (Imax), time (t), and temperature hold (Th) are
given. The ranges of training data set were 0.00479 ≤ s ≤ 0.07433 at
5 points, 6.11 �A ≤ Imax ≤ 28.44 �A at 5 points, 7.93 s ≤ t ≤ 249.47 s
at 489 points, 24 K ≤ Th ≤ 51 K at 5 points. The current configuration
to be modeled by the neural network is shown in Fig. 1. Training
an MLP using the GA to compute I involves presenting them with
different sets (s, Imax, t and Th) sequentially and/or randomly and
corresponding calculated values I. Differences between the target
Fig. 1. Neural calculation for isothermal decay curves of trapping centers from the
thermally stimulated current.
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Table 1
Different topologies of MLPs trained by BP and GA.

Training
algorithm

The number of neurons in Training time
(min:s)

Error

First
hidden
layer

Second
hidden
layer

BP

6 – 00:45 0.00925
12 – 01:20 0.00854
24 – 02:11 0.00750
48 – 04:05 0.00543
96 – 06:10 0.00550

6 4 06:50 0.01517
12 6 08:40 0.01315
12 12 10:25 0.00825
24 12 13:42 0.00310
48 24 14:15 0.00098
96 48 15:24 0.00195
96 24 19:30 0.00220

GA

6 – 01:50 0.00020
12 – 02:43 0.00015
24 – 05:45 0.00010
48 – 08:12 0.00005
96 – 10:05 0.00008

6 4 07:10 0.00109
12 6 14:50 0.00050
12 12 15:35 0.00001
24 12 17:05 4.50 × 10−5
I. Kucuk et al. / Journal of Alloys

rrors between I and I ANN for all the training set fall below a given
hreshold) or the maximum allowable number of epochs (the time
eriods that encompasses all the iterations performed after all the
atterns are presented to the network) is reached.

Furthermore, in order to understand the MLPs prediction accu-
acy and generalization capacity the networks were also trained
ith the training set, cross-validation set and checked with test
ata. The network memorizes the training set and does not gener-
lize well when the network is trained too much [27]. The training
olds the key to an accurate solution, so the criterion to stop
raining must be very well described. Cross-validation is a highly
ecommended criterion for stopping the training of a network.

hen the error in the cross-validation increases the training should
e stopped. A practical way to find a point of better generalization is
o use a small percentage (around 10%) of the training set for cross-
alidation. For obtaining a better generalization of the networks
resented in this work 293 of training data, which were selected
andomly, were used as cross-validation set.

Total 2934 data sets were used in training and test phases. Fig. 2
hows the current values versus the network outputs for all train-
ng data set. The diagonal line in this graph shows perfect match
etween measurement and network output. 398 data sets were
sed to test the network. For the validation, untrained experimental
ata are also used to test the neural model as well. The num-
er of hidden layers and neurons in each layer were determined
hrough trial and error to be optimal including with different trans-
er functions as hyperbolic tangent, sigmoid and hybrid. The MLP
as also trained by the BP learning algorithm to compare with the
A. Table 1 presents training times (for Intel CentrinoTM 1.6 GHz
ith 512 MB of RAM) for training algorithms and errors of differ-

nt topologies of MLPs trained by the BP and GA for 1000 epochs.
t can be clearly seen from Table 1 that the GA algorithm provided

more performance as being the more accurate algorithm than
he BP algorithm. After trials, a better result was obtained from the
etwork a four-layered network as seen in Table 1. In this network
he hyperbolic tangent function is used in the hidden layers, and
igmoid function is used in the output layer. The number of epochs
as 1000 for training, and the most suitable network configuration

ound was 4 × 48 × 24 × 1. It means that the number of neurons
ere 48 and 24 for the first hidden layer and second hidden layer,

espectively.

In the proposed model 6 isothermal decay curves of trapping

enters in undoped TlGaSeS layered single crystals were used. The
stimates of I were found to be in a range from 26.34 to 0.001 �A by
se of measured current results in the TlGaSeS layered single crys-

Fig. 2. Plot of the measurement current values versus the network outputs.
48 24 15:25 6.59 × 10−6

96 48 30:10 1.23 × 10−5

96 24 25:23 0.00021

tals at hold temperatures varying from 24 to 51 K. The correlation
coefficient for the trained data was found to be 0.9997.

All tested isothermal decay curves of TlGaSeS crystal in the range
of training data have high correlation coefficients. Fig. 3 shows the
variation of curves obtained from the neural network model and
experimental data. The values of current achieved from the pro-
posed model are in good agreement with the experimental values of
the TSC. The model was assessed by hold temperature at 34 K which
is outside the training data. The variation of the isothermal decay
curves for hold temperature at 34 K with time given in Fig. 4 also
shows good correlation between measured and predicted results.
The correlation coefficient for the untrained data was found to be
0.9889.

The proposed method has some inherent limitations which
make it not a general solution. The trained neural network is based

on a specific set of TlGaSeS layered single crystals. The trained net-
work can be only valid for the same single crystals. For different
single crystals, a series of experiments would have to be performed
again to obtain input data for the proposed ANN training. If the ANN

Fig. 3. Variation of predicted and measured isothermal decay curves with time for
TlGaSeS crystal at different hold temperatures.
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ig. 4. Comparisons of the predicted and measured isothermal decay curves at 34 K
old temperature.

nput data could include the TSC information of new single crystals,
any more experimental data would have to be done to meet the

ccuracy requirements for a more general solution. However, since
he neural model presented in this work has accuracy and requires
o tremendous computational efforts and less background infor-
ation about the TSC, it can be very useful for the layered single

rystals. This model capable of more accurately predicting isother-
al decay curves of trapping centers in as-grown TlGaSeS layered

ingle crystal is also very useful to researcher working in this field.

. Conclusions

The isothermal decay curves can be predicted by the MLPs using
SC measurements. The predicted currents can be used for compu-
ation of the isothermal decay curves based on the TSC method

nd this helps to obtain a better understanding of the isothermal
ecay curves of trapping centers with hold temperatures. Finally,
he results shows that the proposed model can be useful tool for
esearcher to assess the isothermal decay curves of trapping centers
n TlGaSeS layered single crystal performance.
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